www.orniformation.com Ministère des Enseignements Secondaires Office du baccalauréat du Cameroun

Examen : Baccalauréat

Session: 2018

Séries/Spécialités: F₁-F₂-F₃-F₄-F₅-F₇-F₈-CI

Épreuve: MATHEMATIQUES

Durée: 3 heures Coefficient: 3

Cette épreuve est constituée de deux exercices et d'un problème étalés sur deux pages que chaque candidat essayera de tout traiter.

Exercice 1: (5 points)

La conductivité molaire y (en S. mol^{-1}/m^3) d'une solution de chlorure de potassium dépend de sa concentration x (en mol/dm^3). Une série de mesures effectuées a donné les résultats suivants :

Valeurs x_i de x	0,045	0,071	0,126	0,141	0,155
Valeurs y de y	0,0145	0,0135	0,0130	0,0125	0,0120

Représenter le nuage de points associé à cette série statistique : prendre 1 cm pour $10^{-2} \, mol/dm^3$ abscisses et $10^{-3} S. \, mol^{-1}/m^3$ en ordonnées.

Un ajustement affine peut-il être justifié ?

(2pts)

Donner une équation de la droite de régression de y en x.

(2pts)

(Pour les calculs, on prendre des arrondis d'ordre 6).

Donner une estimation de la concentration de la solution correspondant à une conductivité molaire de 14.8×10^{-8} Semol⁻¹/m³. (1pt)

Exercice 2: (4 points)

Le plan complexe est muni d'un repère orthonormé usuel $(0, \overrightarrow{e_1}, \overrightarrow{e_2})$. A et B sont des points d'affixes $z_A = 2i$ et $z_B = 4 + 2i$.

Faire une figure avec les points $O, A, \mathcal{D}, \mathcal{F}$ et D tels que $\overrightarrow{OA} = \overrightarrow{BD}$ et \mathcal{F} milieu de (1,25pt)[AB]. On précisera les coordonnées du point D.

Soit (Σ) le lieu des points M du plan situés à égale distance de F et de l'axe des abscisses.

Préciser la nature de (Σ) .

Déterminer graphiquement trois points de (Σ) à coordonnées entières et construire (Σ) sur (1,5pt)la figure précédente.

(1,25pt)Résoudre dans C l'équation $z^2 - (4+4i)z + (2i)(4+2i) \ge 0$. 3)

Problème: (11 points)

Partie A: (4 points)

- Déterminer la solution f de l'équation différentielle y' = yln(0,6) dont la courbe (C_f) 1) (1pt) dans un repère passe par le point de coordonnées
- (0,5pt)Résoudre dans IR, l'inéquation $(0,6)^x < 10^{-3}$ 2) Un fabriquant de plaques isolantes phoniques indique que la pose d'une couche de 3) ses plaques absorbe 40 % de l'intensité du son exprimée en décibels(db).

Soit I_0 l'intensité initiale non nulle du son émis dans une salle par une source et I_n l'intensité sonore dans la salle voisine après la pose de n couches de ces plaques. n étant un entier naturel non nul.

Fa-cl		(0,5pt)
b) [Déterminer I_1 en fonction de I_0 . Démontrer que $I_n=0.6\ I_{n-1}$ et en déduire une expression de I_n en fonction	de n et (1pt)
de I_0 .	À partir de combien de couches de ces plaques posées, est-on sûr que l'i dans la salle voisine est inférieure au millième de l'intensité sonore initiale (Noter que I_0 est strictement positif).	ntensite
Partie	Soit g une fonction de IR vers IR avec $g(x) = -x\ln(0.6) + (0.6)^x$. Démontrer que pour x appartenant à IR , on a $g'(x) = \ln(0.6)[-1 + e^{x\ln(0.6)}]$	(0,5pt) (0,25pt)
2)	a) Démontrer que $\lim_{x\to -\infty} g(x) = +\infty$. b) Déterminer la limite de g en $+\infty$.	(0,25pt)
3)	Dresser le tableau de variations de g .	(1pt)
4)	Calculer $\lim_{x \to +\infty} \left[\mathcal{J}(x) + x \ln(0,6) \right]$ et $\lim_{x \to -\infty} \frac{g(x)}{x}$.	(1pt)
5)	Conclure Tracer avec soin la courbe (\mathcal{C}_g) de g dans un repère orthonormé (\mathcal{O}_g)	(1,5pt)
6) d'équ 7)	dra 2 cm pour unité. Calculer l'aire \mathcal{A} en cm^2 de la portion du plan délimitée par (\mathcal{C}_g) et le uations $y = -x\ln(0.6)$; $x = 0$ et $x = 2$. Une entreprise produit des plaques isolantes phoniques. Une étude a purise entreprise produit des plaques après la création de cette entreprise.	es droites (1 pt) permis de
capit	tal (en dizaines de milions de franco) de la Qn vérifiera que h n'est croissant	(0,75pt)
l'inte	ervalle [2; +∞]).	période de (0,75pt)
5) sur		
		** .